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Unsteady effects in a separated recirculating eddy beneath a subsonic or supersonic 
mainstream are considered, with emphasis on nonlinear properties. The eddy is 
slender and predominantly inviscid, its length being comparable with, or less than, 
the chord of an airfoil, for instance. It is found, from the study of a family of integro- 
differential equations, that the planar eddy can break up nonlinearly within a finite 
time, causing an eruption into the main stream and setting up a subsequent Euler 
stage in the unsteady motion. Comparisons with recent experiments and further 
applications of the theory are discussed. 

1. Introduction 
Both small- and large-scale separating flows are well known to be very prone to 

instability a t  sufficiently high Reynolds numbers, according to experimental evidence 
and to the classical linear stability theory associated with infinitesimal disturbances. 
Such non-parallel basic flows tend to be susceptible to linear instabilities of the 
Tollmien-Schlichting, Gortler, Rayleigh and Kelvin-Helmholtz types. The current 
theoretical contribution is aimed at  extending the understanding of the instability of 
these flows to encompass nonlinear features, as distinct from the well-established 
existence of linear instability. The nonlinear behaviour of imposed or free unsteady 
disturbances is essential to the process of transition to turbulence in developing 
boundary layers, separating flows and other basic non-parallel motions. In  practice, 
it is found that a separating laminar flow can break down abruptly in spatial terms 
with a sudden turbulent reattachment occurring just beyond the separation point, 
due to transition and the enhanced entrainment of the resulting turbulent motion, 
and/or with an increase in the lateral scale of the strongly disturbed, unsteady, flow, 
among other significant features. See, for example, the works of Tani (1964), Gaster 
(1966), Mueller & Batill (1980), Van Dyke (1982), Dovgal, Kozlov & Simonov (1987), 
Kozlov (1987), Mezaris et al. (1988) and references therein. 

Recent theoretical studies of some nonlinear disturbances in separating flow are 
presented by Smith & Burggraf (1985) and Smith (1985a) (again see references 
therein), while certain linear disturbances properties were addressed recently by 
Goldstein (1984), Stewart & Smith (1987) and in fact many previous workers (e.g. see 
Drazin & Reid 1981, p. 229) have used various approximations for the linear 
instability regime. Of some relevance here is the prediction 

( l . l a )  
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(Smith 1985a) for the position x* = a t  which substantial inviscid instability first 
arises in a separating incompressible boundary layer for a linear disturbance of fixed 
frequency Q*, with the separation sited a t  x* = x& on an airfoil, say. In ( l . l a )  
Re, is a global Reynolds number, based on the local free-stream velocity uf and 
the airfoil chord, 1, and is assumed large, while A, is the O(1) skin-friction factor of 
the attached boundary layer just ahead of separation, b z 0.44 and Q* lies in the 
range 
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( l . l b )  

The prediction (1.1 a )  is from a far-downstream analysis of the triple-deck structure 
describing the laminar separation, and indeed we observe that if the driving 
frequency Q* is reduced to the Tollmien-Schlichting order Ref uT/l then the critical 
position in ( l . 1 a )  moves upstream to within O(1Re;:) of separation, i.e. within that 
triple-deck, yielding then a non-parallel Tollmien-Schlichting instability of the local 
separating flow. Conversely, if the frequency sZ* is raised to the order Re! uf/l  then 
the critical position is moved downstream, to  0(1 Re;&) beyond separation, a t  which 
stage the departure distance of the detached boundary layer from the airfoil surface 
becomes comparable with the detached boundary-layer thickness. This happens 
because locally the departure distance K 1 Re;h(z*/l)$ in laminar separation, whereas 
the above boundary-layer thickness stays fixed a t  O(1Re;;). At that stage the 
detailed basic-flow properties of the detached boundary layerlfree shear layer and 
the separated flow underneath it count equally in the linear stability characteristics, 
which are then more of the Rayleigh kind. 

There are two main reasons for our interest in the prediction (1.1). One is that it 
agrees well qualitatively with the experiments of Mezaris et al. (1988), and to some 
extent quantitatively as well (as their paper shows) bearing in mind the comments 
following (l . lb),  and that encourages further study, as here, of the stability 
characteristics of separating flow at large Reynolds numbers. The second is that, 
combined with the above comments, and with account taken of the increased 
departure of the free shear layer further downstream, the framework underlying (1 . l )  
points to an investigation of nonlinear disturbance properties in a separated eddy of 
longer scale, comparable with the airfoil chord, where the viscous free shear layer 
appears relatively thin. This sets the scene for the present study of nonlinear 
disturbances on a more global scale than for (1.1). 

The model used here has an unsteady nonlinear eddy motion, typically of length 
O(1) or less, but slender, of width O(h)  say, beneath a subsonic/incompressible or 
supersonic stream, as described in $2. The existence of the nonlinear breakdowns 
proposed in $84, 5 means that such a separated eddy motion, initially in a slowly 
evolving state of either zero or uniform vorticity, can erupt locally, within a finite 
scaled time, if a non-infinestimal disturbance perturbs the separated flow. I n  practice 
such a disturbance might well emanate from free-stream unsteadiness, for example, 
or from surface roughness or a vibrating ribbon upstream, while the eddy present 
may be long or short. The assumption of effectively zero initial flow in the eddy or, 
more precisely, of initial velocities less than O(hi) there, would tend to be associated 
more with a long eddy since the analysis is localized, so that the separation then 
appears ‘open ’, whereas the uniform-vorticity condition would seem more 
appropriate perhaps to a short or ‘closed’ eddy. The local eruption can arise in 
subsonic or supersonic flow also, with or without finite vorticity, and indeed it can 
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apply in principle to thin eddies with fairly general distributions of vorticity because 
the breakdown analysis is localized. 

Further discussion is given in 96, including extra applications and extensions of 
the theory as well as comments on the experiments. 

2. The nonlinear equations for the inviscid eddy 
A slender two-dimensional airfoil of thickness-to-chord ratio h is symmetrically 

placed in a uniform stream U,. The fluid is taken to be inviscid and a free streamline 
leaves the body at  some point ahead of the trailing-edge and forms an eddy to the 
rear of the airfoil. The velocity components in the direction of, and perpendicular to, 
the line of symmetry of the flow are Urn u, Urn v, and the corresponding coordinates are 
lx, ly where 1 is the chord length and the origin is at  the leading edge ; the pressure 
is pw U z p ,  where p m  is the constant density at infinity, and t l /U,  is the time. The 
equation y = S ( x , t )  of the eddy boundary is one of the unknowns. 

On the assumption that the thickness ratio h 4 1,  and that the eddy width is also 
O ( h ) ,  the flow may be considered in two regions. Outside the airfoil and eddy 
combination the flow is quasi-steady on a long timescale t = O ( h d )  and is a linear 
perturbation of the free stream. Thus p is O(h) and the value of p(x,O,t) is, for 
subsonic flow, given by slender-airfoil theory as 

where y = f ( x )  is the equation of the airfoil and xo is the point of departure of the 
streamline from the body. We shall not be concerned here with its value which could, 
in principle, be determined by a triple-deck smooth separation condition or fixed a t  
a corner in the airfoil geometry. If the flow is supersonic (2.1) is to be replaced by the 
simpler condition 

according as x 5 xo. 
In  the interior of the eddy the flow is nonlinear and is assumed to be slow moving 

with u = O(hi) ,v  = O(ht) and p = O(h),  in a region in which x = O(1) but y = O(h)  
since the eddy width is comparable with the thickness of the airfoil. For viscosity to 
be unimportant it is necessary that Rh; 9 1 [see however $61, R being a representative 
Reynolds number. With this condition and h < 1 the governing equations in the 
eddy are 

ux+vy = 0, Ut+UU,+vUy = -p,, 0 = -py, (2.3 a+) 

whence, since the pressure is independent of y, p is given by p ( x ,  0, t )  in (2.1) or (2.2). 
Solutions of the system (2.3) which holds for x > x,, have, as material surfaces of the 
fluid, y = S ( x ,  t )  above, and the airfoil y = f ( x )  below. 

Equation (2.3b) is equivalent to D(uy)/Dt = 0 and a simple example, which 
nevertheless contains many features of interest, is obtained by assuming an initially 
zero distribution of vorticity in the eddy, so that u remains independent of y for all 
x ,  y,  t .  In this case u = u(x ,  t ) ,  v = - yu, + (fu),, equation (2.3b) reduces to 

p ( x ,  034 = f ” x )  01‘ S,(X, t ) ,  (2.2) 

Ut + uu, = -px, (2.4) 
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and the kinematic condition that v = X,+uS, at  the eddy boundary y = X(x, t )  
becomes, when y is set equal to S in the expression for v given above, 

8, + [u(X-f)l,  = 0, ( 2 . 5 )  

with f = 0 for values of x beyond the trailing edge. 
The system of equations to be solved for u ,S ,p  is thus (2.4), (2.5) together with 

either (2.1) or (2.2). If instead of a zero vorticity we taken uy = G for constant 
negative vorticity G, so that u = G y + q ( x ,  t ) ,  then (2.4) and (2.5) are replaced by 

respectively. The case G = 0 corresponds to  a limit problem of very weak vorticity 
in the separated region. 

An indication of the possible behavior of the solutions of (2.4), (2.5) subject to 
(2.1), or (2.2) with x > xo, can be obtained by seeking local short-wave linear 
pcrt,urbations to a solution with S = So, f = fo, both constants. On replacing a/at by 
-is2 and a/ax by ia, where 1521, la1 are both large, we find that 

5 2 2  = - (So - fo) a2ICI.1, 

if the flow is subsonic, i.e. if (2.1) is used, and 

Q2 = (So-f,) ia3, (2.9) 

if (2.2) is used for supersonic flow. Thus in either case I m Q  + GO as a+ GO, with the 
flow then being linearly unstable. This is indicative of the solution of an appropriate 
initial-value problem for the linearized system becoming singular in a finite time. 
There is thus the prospect of such a phenomenon occurring also in the solution of the 
nonlinear system, and it is to the possible form of such breakdown that we now 
address ourselves. 

3. The similarity equations of the breakdown region 
To illustrate the breakdown phenomenon we suppose that it occurs a t  time 

t = t,-0 in the neighbourhood of an unknown station x = x, > xo. For simplicity we 
set f = O t  and write 

x--2, = (t,-Qnx" (n > 0), (3.1) 

and (8, u, p )  = [ ( t ,  - t)""-"(x"), ( t ,  - t y - 1  G(Z), ( t ,  -t)""-"(q] (3.2) 

in (2.4), (2.5) so that they become 

(2-3n)8+n&'+(G8)' = 0, (3.3a) 

(3.3b) (1 -n) G+ndG'+dG' = -@', 

with 

if the mainstream is subsonic, and - 
@ = 8' 

(3.4) 

(3.5) 

t This is without loss of generality when n < $, since then S + 1 and f( = O(1)) is negligible. 
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if it is supersonic. If G in (2 .6) ,  (2 .7)  is non-zero then, as t+t,-0, the term in GSS, 
in (2 .7)  dominates if n < f, is unimportant a t  leading order if n > t ,  but if n = $ the 
equation becomes 

where, for convenience and comparison with (3 .3a) ,  we have written q = (t,-t)-;G(x"). 
Since f = 0, equation (2 .6)  then transforms into (3 .3b) .  

The assumption that breakdown is confined to the neighbourhood of x = x, means 
that, if n < Q ,  s", and if n < I ,  both G and 9, must tend to zero as 121 + 00. This is clear 
from the transformation (3 .1) .  If n = tit is acceptable for s" to tend to non-zero limits, 
although in all cases s" must remain non-negative over ( -  co, C O )  since it represents 
the scaled eddy width. 

@+$x"R'+(Gs")'+Gs"R' = 0, (3 .6)  

4. Supersonic eddy-breakdown solutions 
In this section we examine solutions of (3 .3)  together with (3 .5)  when $ 6 n < Q .  

For 121 % 1 we require s",G to tend to zero (or be bounded when n = $) with 
s" = O(121(3n-2)/n) and .ii = O(121(n-1)/n). We first note that the system is invariant 
under the transformation 

(4 .1)  (s", C,$, 2)  + (A3s", AG, A2$, Ax"), 

for any constant A ,  but is not reversible up- and down-stream since negative A 
implies negative s" which is not permissible. Secondly, for all n an exact solution is 
s" = G = -+3 which, although in itself not of direct use, does demonstrate the 
asymptotic form of the solutions which must be excluded. That no acceptable 
solutions exist for n < 3 may be seen on integrating (3 .3a)  in the form 

[ (n2+. i i )s"]2m+2(l-2n)  s"dx" = 0;  (4 .2)  

the value of the integrated term is zero, and that of the integral, which converges in 
this situation, is positive. 

If n = + an analytic solution of the system is possible, and if n = Q a linearized 
solution may be found. We first consider n = as it yields phenomena that are also 
present a t  larger values of n. It is also, as demonstrated in $ 6 ,  most likely to 
correspond to an eddy breakdown of a separated flow as described here, one reason 
being that, as can be seen from (3 .1) ,  (3 .2) ,  the lowest acceptable value of n leads to 
the strongest singularity. We later consider n = 0.6 as a representative value 
between the limits o f t  and t. 

4.1. The value n = 

When n = + equations (3.3),  (3 .5)  integrate to 

(;x"+G)s" = C, i (x"+G)G+R' = D,  (4.3a,  b) 

where C, D are constants, and we see immediately that (4 .3a)  is unacceptable with 
the same non-zero C for all x" since G + 0 as 121 + 00 and such C cannot be both positive 
and negative. Here we seek a solution in which C = 0, and discontinuities in ii and 
R' are permitted. The adjustment regions at these discontinuities are then 
accommodated by appeal to the full equations for the eddy, namely (2 .4) ,  (2 .5) .  To 
satisfy (4 .3a)  we assume that s" = 0 for 3 < x"- and for x" > x",, and that Q = --+2 for 
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2- < Z < 2,. Then (4.3b) is satisfied if s" is a cubic in 2 when 2- < Z < 2+, with 
zcroes a t  2-, Z,, and 

for Z > Z+, (4.4a) 

.ii = -!#-+(Z2+8D-)f for Z < Z-, (4.4b) 

where the roots have been chosen so that 0 as 121 + co , and we shall allow D+ to 
differ from D- if necessary. By trial i t  is found that the adjustment regions, to be 
discussed below, can accommodate only the situation in which the cubic for s" has a 
double zero a t  2 = Z+ > 0 and a single zero a t  Z = 2- < 0, with the result that, since 
the cubic for s" has no term in Z2 ,  2- = - 22, and 

s" = $(2 + 22,) ( 2  - Z+)'. (4.5) 

Thus the eddy boundary has collapsed so that i t  has a cusped trailing edge and a 
sharp leading edge. At the cusped downstream end the equation for the adjustment 
region requires .ii to be continuous which means that D+ = -;Z?, and at the sharp 
upstream edge the appropriate adjustment region equation determines the 
discontinuity in .ii which, as it will emerge, leads to D- = -:Z? also. 

When the constant vorticity G in (3.6) is non-zero (4 .3a)  is replaced by 

(;2+++ps")s" = C,  (4.6) 

and upon again choosing C = 0, and s" = 0 for Z > 9, and Z < Z-, it follows that the 
equation to be satisfied by s" in 6- < Z < Z+ is 

(4.7) = ' ( 22  - G2G2 - 22 + I .  
As in the case G = 0, s" must have a double zero a t  Z+( > 0) since the adjustment 
region equations will be found to be independent of the value of G a t  leading order. 
Equation (4.7) does not have an acceptable solution, i.e. one with a second zero for 
Z < Z,, for all values of Z:G, however. That this is the relevant parameter may be 
seen dy defining 

so that (4.7) becomes 
Z = 2+Z, s"(Z) = Z+ B(X)/lGl 

- -  
P = A ( X 2 - R 2 - 1 ) ,  A = %' 8 +  IGl, (4.9) 

which is to be solved with g(1) = 0 for those values of A for which a has a second 
zero a t  some x < 1. When A 4 1 we obtain R = g A ( 3 + 2 )  (3- 1)' so that in this 
limit we again have the solution (4.5). 

As A increases the position of the second zero of A becomes increasingly negative 
and tends to minus infinity as A + A ,  which has been found numerically to lie 
between 0.59 and 0.60. For A > A,,  E tcnds to infinity a t  a finite value o f 3 .  The limit 
solution with A FZ A ,  may be described as follows. As A + A ,  -0 the maximum value, 
Emax say, of 2 increases and, if we scale the solution so that the maximum value of 
s" is unity, it  follows from (4.8) that  Z+8max/lGl = 1 with RmaX + 1. Thus, from the 
definition of A in (4.9), 

IGI = (Amax): ( 8 4 f  + 1 ,  (4.10) 

so that this gives the limiting solution for large values of the vorticity (GI. Once this 
is established i t  is simpler to describe its properties in terms of the variables s",Z. 
When 0 < - Z  = O(1)  we have, from (4.7), that  

s" z -Z/lGl, (4.11) 
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which holds throughout Z- < Z < 2,  except near the end point 2- where x" must have 
a zero, and near the end point Z+ ( =  ( 8 A c / l G l ) ~  6 1 )  where a double zero is required. 
Since the maximum value of x" is unity i t  follows from (4.1 1)  that 2- = -(GI, and from 
(4.7) that bhe solution in this neighbourhood is 

s" w tanh (s (2+ 1G1)) (4.12) 

in the region with 0 < [GI2 (Z+ IGl) = O(1).  In the neighbourhood of Z+ it is necessary 
to solve the full scaled equation (4.9) with &l) = 0 and A = A c ;  this solution has 
&rf) x -2 as x+- co and achieves a match with (4.11). The corresponding 
solution for Q is, from (4.4) with D, = D- = -$:, the value of D- being quoted in 
anticipation of the results of 54.3, since Z+ 6 1,  

Q = O ,  forZ<-IGI, Z>O, (4.13) 

i.e. outside the collapsed eddy, and 

Q = -Ljj 2 (I-sgnG), (4.14) 

when - IGI < Z < 0. The corrections in the neighbourhoods of the leading and trailing 
edges follow from those for x". Thus for large positive G (negative vorticity) the 
fluid velocity is essentially zero inside the eddy except for a forward pulse near the 
sharp leading edge; this forward pulse arises because, from (4.6), i t  follows that 
Q(L) = -$3-. The discontinuity to the right is accommodated by the solution (4.12) 
for s" with Q = -a(Z+Gs"), and that to the left by the adjustment region analysis of 
54.3. When G is large and negative the velocity is again in the positive direction and 
decreases linearly from the large value - 2- near the sharp leading edge to zero a t  the 
cusped trailing edge. There is again a double discontinuity a t  the leading edge; Q is 
reduced from -2- to -+2- in the region 0 < JGI2 (Z+)GI) = O(1) where (4.12) holds, 
and then from -$Z- to zero (in this large /GI situation) in the adjustment region of 
54.3. 

The solution we have described in this section is illustrated in figure 1, where we 
have anticipated the results of fjs4.2, 4.3 that .iz is continuous at the cusped 
downstream end, and has a determinate discontinuity at the sharp upstream end, 
with the result that  D+, D- in (4.4) are both equal to -82;. In  figure 1 ( a )  we take 
G = 0 and the maximum value of s" to  be unity which determines Z+ as 6;. For figure 
1 ( b )  we have chosen A = 0.3 for a numerical integration of (4.9) which, upon scaling 
so that again the maximum value of x" is unity, gives 2,  w 1.76 and IGl x 0.78. The 
velocity profile Q is plotted for G both positive and negative and we see that A (and 
[GI) is sufficiently large for .iz to depart from its zero-vorticity limit value of -;Z for 
2- < Z < Z+; the value of 2- is -3.66. In figure 1 (c), A = 0.59, which is very near to  
its critical maximum A,,, and we see that the characteristics of the limit solution 
described above are being attained although the value of [GI is only 3.59 as yet. The 
values of 2+,Z- are approximately 1.15 and -4.07 respectively, also some way from 
their limiting values of zero and -(GI. 

At the cusped downstream end we obtain no further information from the 
adjustment region but must examine the solution to confirm that the smoothing is 
possible. At the sharp upstream end the solution in the adjustment region determines 
the discontinuity in Q and the constant D- in (4.4b). 
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FIGURE 1 (a ,  b) .  For caption see facing page. 
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FIGURE 1. (a )  Supersonic eddy with n = 4 and G = 0 : values of 8, C. ( b )  As (a )  but with 
IGI = 0.78. (c) As (a )  but with IGI = 3.59. 

4.2. The downstream adjustment region at Z = 9, : the cusped end 

To discuss the adjustment region we must return to the full unsteady equations (2.4), 
(2 .5)  together with ( 2 . 2 ) .  We examine the neighbourhood of 9 = Z, by setting 

x-x, = (t,-t)$Z++i?g with b 4 (t,-t)t,  (4.15) 

(4.16) 

in (2.4), (2.5), ( 2 . 2 ) ,  the powers of (t,-t) following from the transformation (3.1). It 
is expected that the precise dependence of 6 upon t is determined by the initial 
conditions. The double zero of s" a t  Z+ leads to the factor d2 in S, and the term 
O(d) in u arises because lii in (4.4a) has a square-root singularity a t  Z, when D ,  is 
chosen so that lii is continuous a t  Z+, as is also implied in (4.16). The leading terms 

1 1  
and As z P(ts-t)-%([), u z -$+(ts-t)-r+B(t,-t)-P- U ( t ) >  

- in (2.4), (2.5) are 

which integrate to give 
- 

GS = c+, s" = d ,  +$E,[-c:/2P2, 

(4.17) 

(4.18) 
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FIGURE 2. Solutions of the supersonic adjustment equation (4.19). 

where c+( > 0) ,  d+ are constant. The match with the outer solution (4 .5)  is achieved, 
regardless of the values of the constants c+, d+ ,  provided that (4.18) has a solution in 
which 8 x k2+ t2 as t+- co and 8 x (2ct /2+ 0-i as t++ GO with 8> 0. This is 
equivalent to requiring a solution of 

z' = q-z+ with z x 7-i,,y2 as r + + m ,  (4.19) 

in which z remains positive over ( -  co, co). Differentiation of (4.19) and examination 
of the solutions of the resulting equation in the (z',z)-plane indicates that  the 
required solution exists and is unique. It has, in addition, been obtained by a 
Runge-Kutta integration and we deduce that z ( 0 )  x 1.30. Figure 2 illustrates the 
solutions with z ( 0 )  = 1.298 and z ( 0 )  = 1.299 which, respectively, tend to zero at a 
finite value of 7, and increase like r2 for 7 % 1 .  The required solution lies between 
these and is indicated in figure 2 by the dashed curve calculated from the first two 
terms of its asymptotic expansion for 7 % 1 .  

4.3. The upstream adjustment region at 2 = 2- the sharp end 

This adjustment region determines the discontinuity in 4 at the sharp leading edge 
of the collapsed eddy, i.e. i t  determines the constant D- in (4 .4b) .  We return again 
to the unsteady equations (2 .4) ,  (2 .5)  and write 

x-x, = -2Z+( t , - t ) i+dt  with A < (t,-t)i, (4.20) 

and S = A(t , - t ) - lS( t ) ,  u = ( t s - t ) - i G ( t ) ,  (4.21) 

analogously to (4.15), (4.16). This time the leading-order terms are 
- 

-2+F+(jq'=O, --+%)++a'= -s", (4.22) 

so that ( - 2 + + U ) S  = - c - ,  -2+E+,U2=-S'+d- ,  (4.23a, b )  
- - 

where c-, d- are constants. Elimination of gives 

S = (d-++2t)-cC2/2fJ2. (4.24) 
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Now as [+m this must lead to a match with (4 .5) ,  i.e. Sx (d-+$E:)g where 
d- ++Z: = &Z:, and as [+- m where S = o(5) (in fact where, from (4 .24) ,  

S-2 [c2/2(d- +a2:)];) 

we must have a match between fi in ( 4 . 2 3 ~ )  and d in (4 .4b)  as 2+-2Z,.  This 
finally gives L)- = --:x:, a result which implies that the decrease in d as 2 goes from 
- 22, + 0 to - 22, -0 is (2h)i where h = X'( -22, + 0), i.e. the slope of the leading 
edge of the eddy. We shall find that the same relationship holds in a similar situation 
a t  other values of n. 

The solution to equation (4.24) is 

(4.25) 

where (4.26) 

and [,, is an arbitrary constant, which satisfies all the requirements. 
When the vorticity constant G is non-zero the adjustment regions a t  the ends of 

the eddy are exactly the same, because the term GSX, in (2 .7)  is unimportant a t  
leading order. Essentially the difference is that (4 .1)  does not hold when G is non- 
zero, and we cannot take a fundamental solution, say with Z, = 1.0 or maxx" = 1.0, 
and derive all others from it using (4 .1)  for arbitrary A > 0. If G is non-zero the 
solution obtained from such a fundamental one would be a solution, but not for the 
same value of G, and as noted above there would be solutions for 2:IGl < 4.8 
only. 

4.4.  The value n = i 
The other limit, i.e. n = i, of the range of n under consideration, is such that the eddy 
boundary s" may tend to a non-zero limit either upstream or downstream, or both. 
In  view of the transformation (4 .1)  we may restrict ourselves to considering those 
solutions with x"( - m) = 1.0 and x"(m) < 1.0 or conversely. I n  this situation a 
linearization about the solution A!! = 1 .0 ,C  = 0 is possible and if we write 

s"= 1 + E &  C = e d l  (4.27) 

for arbitrary small constant amplitude 6 then (3 .3) ,  (3 .5)  become, on neglecting the 
nonlinear terms, 

(4 .28)  

from which we find that the solution for dl is 

(4 .29)  

where U is the confluent hypergeometric function in the usual notation. The analytic 
continuation to negative Z must be made using formulae (13.1.9,10,27) of 
Abramowitz & Stegun (1965) with arg Z3 = 3n. For Z P 1 ,  d = O(5-t) as required, and 
for Z < - 1 , d  = 0 (exp &Z3) and decays exponentially, although in general the 
nonlinear solutions of (3 .3) ,  (3 .5)  will have .ii = O((Z(-;) as Z+- m also. 

The solution (4.29) is useful for checking the numerical scheme that is required for 
the nonlinear system by verifying the accuracy of solutions a t  small but non-zero 
values of 6. For example, if Cl(0) = d ,  then integrals of the confluent hypergeometric 
functions may be used to give 

&(O) = 2 - h - ( $ )  r($)/r(+) r($), (4.30) 

and x"*(oo) = 2 - + & r ( 3 r ( $ ) ,  s",(-m) = -2s",(Oo), (4.31) 

1 1  4 - 3  dl = U ( B , H , E X  1 
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for the case with s",(O = 0. A constant may be added to x", to make x", vanish a t  d 
equal to plus or minus infinity if required. The different behaviour of S a t  d = f 00 

and the differing values of Ix",( f 00)l are further illustrations of the non-reversibility 
of this supersonic flow. 

The other solutions of (3.3), (3.5) with n = $ must be found numerically and this 
was achieved by first setting s"( - co) = 1.0 and gradually reducing x"(00) from 1.0 
(i.e. gradually departing from the linearized solution). Subsequently we solved the 
complementary problem with s"( co) = 1.0 and s"( - 00) < 1.0. In the first of these 
investigations we found that it is possible to reduce x"( CO) to O+ and that the limiting 
solution is very similar to - the cusped downstream collapse with n = $ described 
earlier. For 2 > 2, > 0, X is identically zero; a t  2 = d+ the value of S is -$d+,G 
is continuous through d+ although its derivative is discontinuous, and s"(d+-0) = 
S"l(2,-0) = 0 so that both s" and S"l are continuous. In the second investigation with 
s"( 00) = 1.0 it is possible to reduce x"( - co) to 0+, and the limiting solution resembles 
the collapse a t  the sharp upstream end of the eddy with n = t .  The point of collapse 
is 2 = 2- < 0 where s" is continuous, although S"l and 6 are discontinuous with 
S(Z-+O) = -$2-. Figures 3 and 4 illustrate the phenomena for x"( - CO) = 1.0 with 
s"(co) = 0.5,0.1,0.0, and for x"(co) = 1.0 with x"(-co) = 0.5,0.1,0.0 respectively. 

The analysis of the adjustment regions may be carried through exactly as for 
n = f. For d > 9, in the first investigation, and for d < 2- in the second, we have, 
from- (3.3b) with's" = 0, 

- 

d2(d+d) = c,, - (4.32) 

where the constant C+ = &d$, since S is continuous a t  d+. The root for 13 must be 
chosen so that G - t  0 as d+ f co respectively in the two problems; thus C, > 0, 
G- < 0. To examine the adjustment region of the cusped collapse in the first problem 
we make the transformation (4.15), (4.16), although with the appropriate powers of 
t,-t that follow from (3.1) with n = $, and obtain equations equivalent to (4.18); 
thus the adjustment region is once again passive and the existence of the solution 
serves to confirm the structure. However for the upstream collapse in the second 
problem the discontinuity in d is determined by the adjustment region, the equation 
for which is analogous to (4.24), and the same result holds as was noted there - there 
is a decrease in 6 as 2 goes from 2-+O to 2--0 of magnitude (2h)i where, as there, 
h = f?(2-+0). This implies that C- in (4.32) is given by 

c- = ($2- + (2492 ($2- - (ah)"). (4.33) 

The limiting solutions shown in figures 3 , 4  were plotted using numerical solutions 
of (3.3), (3.5) for the regions where s" was non-zero, and (4.32) for G for 2 > 2, and 
2 < 2- respectively. For the cusped collapse the finite-difference scheme reproduced 
the square-root singularity in S a t  2 = 2, + 0 very well (no doubt because x", A!?, G are 
continuous there) but could not predict well the jump discontinuity in S a t  5-. We 
estimate that d+ M 1.89, 2- M -2.00, and h M 0.68. 

Another point of interest is the small overshoot of s" over its value of unity a t  
d = - 00. This is of about 1 % and is invisible in figure 3 (a ) ,  but its presence can be 
deduced by the maximum of S in figure 3(b), since s" and S are stationary 
together. 

Thus when n = $ there are many more solutions than there are when n = t ,  in 
which case there is only the one solution we described in $4.1 together with those to 
be obtained from it by use of the transformation (4.1). We shall, by taking n = 0.6, 
support the conjecture that as n decreases the solutions get sparser until finally the 
doubly-collapsed situation with n = + is attained. 
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FIQURE 3.(a) Supersonic eddy with n = $:  values of s' for #(_or,) = 1.0 with #(a) = 0.5,0.1,0. 
( b )  Values of Z corresponding to S in (a). 

2 

4.5. The value n = 0.6 
When n = 0.6 the solutions for L$? in (3.3), (3.5) must be such that s" decays 
algebraically as 121 + co. The decay is O(l2l-i) with S = O(l2l-f). The algebraic decay 
was accommodated in the numerical integration by taking tan-lP over (-in,&) as 
the independent variable ; this was also done for n = 3. Now s" has a maximum a t  a 
finite value of 2 and we took this to be unity. It was found that if s"(0) = 1.0 then s" 
is non-zero for all finite 2, but if this maximum is moved sufficiently far to the left 
a cusped downstream collapse occurs with s"= 0 for P > 2,. for some 2, > 0. 
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FIGURE 4. ( a )  Supersonic eddy with n = $: values of s’ for fi(_oo) = 1.0 with s”( - 00)  = 0.5 ,O.  1,O. 
(b )  Values of C corresponding to  S in (a) .  

Similarly, if the maximum is moved sufficiently far to the right a sharp upstream 
collapse is evident with x” = 0 for d < 2- < 0. The phenomenon is illustrated in figure 
5 (a ,  b )  where we have drawn x”, .ii for the case when x“ has unit maximum a t  the origin, 
and for the two limiting situations. Equation (4.32) is, for general n, to be replaced by 

(4.34) 1.iiy 14+dl’-n = c+, - 

and the adjustment regions may be analysed exactly as before. Again the downstream 
adjustment region is passive with x”, x”l and .ii continuous through x” = x”, ; the value 
of .ii(x”+) is -nn2+. The upstream adjustment region determines the jump in .ii from 
- n2_ a t  2 = 2- + 0 to - nx”- - (2h)f a t  53 = 2- - 0, where again h is the slope of the 
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FIGURE 5. (a )  Supersonic eddy with n = 0.6: values of for -, eddy with unit maximum at the 
origin; 0, eddy with cusped trailing edge; and x , eddy with sharp leading edge. ( b )  Values of ii 
corresponding to S in (a). 

eddy boundary at L + O .  The eddy with the cusped downstream collapse has its 
maximum height a t  D x -1.98, and 2+ x 1.8. The eddy with the sharp upstream 
collapse has its maximum at 2 z 0.35 with 2- x -2.5 and h x 0.9. 

5. Subsonic eddy-breakdown solutions 
When the free stream is subsonic we must solve (3.3) together with the Cauchy 

integral relation (3.4) rather than (3.5). We consider the same values of n, i.e. 
$ < n ,< 3, so that x”, 6 must tend to zero as 121 + co (except for n = f )  with 

1 ,cc = O( I54(3n-z)/n 
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and d = O(121(n-1)ln) as before. The transformation under which the system is 
invariant is now, to replace (4.1), 

(s“,.1~,r?,2:)~(1~)~S”,~d,~~p,j,x”), (5.1) 

for any constant A,  so that this subsonic flow is reversible as might be expected. This 
means that we shall not have to examine as many solutions as we did in $4. The 
relationship (4.2) is still valid and so restriction to values of n greater than or equal 
to $ is justified. 

As in the supersonic situation an analytic solution is available if n = $, a linearized 
solution if n = $, and otherwise solutions must be obtained numerically. Collapsed 
eddies are again a feature of the model, and to illustrate these we consider first 
n = t in which, as before, a doubly-collapsed eddy appears to be the only possibility. 

5.1. The value n = t 
When n = + equations (3.3) may be integrated to give 

($2+d)S“ = c, $(2+d)d+f i  = D, (5.2a, b )  

which are the same as (4.3) except that p is related to s” by (3.4), and has not been 
replaced in (5.2b). For the same reasons as for the supersonic situation we take 
C = 0, and satisfy (5.2a) by assuming that s” = 0 for 2 < 2- and for 2 > 2+, whereas 
d = -+2 for 2- < 2 < 2+. It then follows from ( 5 . 2 b )  that ji = &E2+D when 
2- < 2 < 2+. Since an interpretation of the relationship (3.4) is that fl and x”, are the 
values at = 0 of the real and imaginary parts of a function Q(Z) of the complex 
variable Z = 2+iy”, and either one or other is known over the whole real axis, the 
solution is now available. It is found that if x” is to be continuous at x”-, x”+ then i t  is 
necessary that 2- = -x”+ and 

(5.3) Q(Z) = +[2-122 2 +  -Z(2-2:);]. 

Thus for 121 < x”+ we have 

(5.4) 

(5 .5)  

s” = &(,-: - 2”! d = - 1,- p = ‘(2’- 152 ) 

s = 0, ii = -+?+$(sgn2) 1 ~ 1 ; ( ~ 2 - ~ : ) + , \  

2 ,  8 2 + 3  

- and for 121 > 2+ 

p = Q[x”’2_Ix“’ -1qp-p)”]. j 2 +  

We have, therefore, a symmetric cusped collapsed eddy with infinite curvature at the 
end points. The velocity ii and pressure fi are continuous there but have discontinuous 
derivatives. As in the supersonic situation the adjustment region in the neigh- 
bourhood of the singularity is analysed by returning to the full unsteady equations 
(2.4), (2.5) together with (2.1). 

For the adjustment region in the neighbourhood of 2 = 2 +  we make the 
transformation (4.15) and write, analogously to (4.16), 

s z d(t,-t)-W((), u = -% 2 +(t,  - t)” + $(t, - t)-g @(‘g), 

p = ~ P ~ ( t , - - ) - ’ + ~ ( t , - t ) - ~ p ( ~ ) ,  (5 .6)  

with the result that, to leading order, 

(5.7a-c) 
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In (5.7) the Cauchy integral relationship between p and 3 is written in differentiated 
form to ensure convergence of the integral. From (5.7a, b )  we obtain, on integration, 

US = C,, p = D,-C:/2Sa, (5 .8)  

where C,, D, are constants. As (+ f 00 the solutions of (5.7),  (5.8) must match with 
the outer solution (5.4), (5 .5)  as Z-tx",. This implies that the following asymptotic 
forms must be attained as 1c1+ co : 

Bx $(22+):(-~)$ as c+-00, 

ax (12 )'ti, p x  -I(LZ 1'6' a s E + a .  and 2 + 4  2 2  . t 2  

Since B is non-negative it follows that the constant C, is positive. 
Equation ( 5 . 7 ~ )  may be integrated in the form 

(5.9) 

(5.10) 

where H ( [ )  is the Heaviside step function, with the result that the integral equation 
controlling the adjustment region is obtained from (5.8), (5.11) as 

(5.12) 

from which the constants have been removed by a simple scaling. 
The required solution of (5.12) has to satisfy the scaled form of (5.9), (5.10), i.e. 

- s = f ( - 5 ) $ + r ( - ~ ) t + 1 / 2 ( - ~ ) - a + 0 ( ( - 5 ) - a )  as(+-co, 

S= g-~++rt;-i+o([-4) as c+co, (5.13) 

where the arbitrary constant r reflects the fact that the equations (5 .7)  are 
unaffected by an origin shift. Direct solutions of (5.12), (5.13) were difficult to find, 
but the equivalent system 

where T(5)  = 8(6) -m> 
and f ( 6 )  is defined by 

f(6) = { I (  - 0; + r[( - [I:- tan-1 ( - 5 ) f ] } ~ (  - 61, (5.15) 

was solved successfully with the boundary condition T (  - 00)  = t r x .  To obtain 
solutions it proved desirable to solve for 1/T($) and to take tan-lt  over (-in, in) as 
the independent variable; the Cauchy integrals were dealt with by a technique 
suggested by Davis & Werle (1982). Solutions computed for different values of r w e r e  
consistent in that they differed by an origin shift, and in figure 6 we plot the solution 
with r= 0 which has S(0) x 1.33. 

The solution a t  the leading edge of the collapsed eddy may be obtained from the 
above by changing the signs of u and [. For comparison with the corresponding 
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FIGURE 6. Solution of the subsonic adjustment equation (5.12). 

quantities a t  the values n = 5,O.S now to be considered we display, in figure 7, the 
values of x", .ii given by (5.4), (5.5) with 9, = 245, a choice made so that max x" is unity. 
This may be compared also with the non-symmetric supersonic doubly-collapsed 
eddy in figure 1, of which the singularities a t  the sharp leading edge and a t  the cusped 
trailing edge are respectively more and less severe than a t  the cusped ends of this 
subsonic eddy. 

Specific solutions for the subsonic eddy for non-zero vorticity with equation ( 3 . 3 ~ )  
replaced by (3.6) have not been obtained but experience gained from the discussion 
of 5 4 for the corresponding supersonic flow suggests that  the following description 
will apply. An integral of (3.6) gives, instead of (5.2a), 

($E++a+g&!3 = 0, ( 5 . 1 6 ~ )  

where as before the constant of integration is zero. The solution of (5.16a) coupled 
with (5.2 b )  is sought in split form, depending on whether 191 5 d+ for some positive 
constant Z+. In  the inner part where -2 ,  < x" < Z+ 

.ii = -+(Z+Gx"), (5.166) 

to satisfy (5.16a), and so (5.2b) yields 

9 = ;(z2 - ~ ~ 8 2 )  + D ,  ( 5 . 1 6 ~ )  

whereas B(2) remains unknown as yet. In  the outer part, 121 > d,, the solution of 
(5.16a), (5.2b) is 

S E O ,  $=-+(d+G).ii+D, (5.16d) 

but $(d)  remains unknown. Then, equating the pressure in ( 5 . 1 6 ~ )  with that of the 
Cauchy-Hilbert integral in (3.4) we obtain the nonlinear integral equation 

* 

- $(Z2 -G2g2) + D ,  (5.17a) 
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FIGURE 7. Subsonic eddy with n = +: values of 8, S. 

2 

governing the function x"(2) for (21 < 2+. Once x" is found from this equation the outer 
pressure and velocity distributions are given by (5.16d) with (3.4) and the inner ones 
follow from (5.16b, c) .  The constraints here are that p ,  3 are to be continuous a t  the 

S = 8' = 0 at 2 = +2+.  (5.17b) 

In  contrast with the supersonic case of $4.1 for non-zero vorticity, symmetric 
solutions seem likely to exist for x"(2) at  all values of G. The limit G+O 
reproduces the earlier solution (5.4)> while for large G the Z2 term in the right-hand 
side of (5.17a) can be neglected, thus yielding an integrated form of the 
Benjamin-Ono equation : more specifically if we transform (2 ,  x") + Z+(Z, Ox") and 
set Dx"tG2 = 8 8  then for large G, provided 2+ 6 lGl-4, (5.17a) becomes the 
Benjamin-Ono equation solved by Smith (1985b), giving v = 1.368 and a symmetric 
solution. The adjustment zones near Z = k 2, are affected little by the presence of the 
non-zero vorticity, we note, and in addition non-symmetric solutions more like the 
supersonic version may still be possible. 

junctions Z = kZ+, and - -  

5.2. The value n = $ 
When n = f solutions of (3.3), (3.4) may be obtained by setting x"( - 0 0 )  = 1.0 and 
#(a) < 1.0; other solutions then follow on use of the transformation (5.1). As in the 
supersonic regime a linearized solution about x" = 1,  IZ = 0 is available at this value 
of n. If, as in (4.27), we define td?l,&l,~@l to be the perturbations, then 

(5.18) 
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FIQURE 8 (a) .  Subsonic eddy with n = 2 .  values of 9 for x"( = co) = 1.0 with s"(co) = 0.5,0.1,0. 
( b )  Values of"a corresponding to S in (a) .  

where is related to s", by the usual Cauchy integral. It may be shown, either by 
taking a Fourier transform or by direct substitution, that the solutions are 

where the additive constant in L!?~ has been chosen so that s",(- 03 = 0.0. These 
solutions proved a useful check on the numerical procedure a t  small values of 
l.O-s"(m); for example, in (5.19), Zl(0) = 4r(!),S";(O) = $I'(Q) and these could be 
verified immediately. 

As in the discussion of $4.4 for supersonic breakdown with n = 3, the value of x"( co) 
may be continuously decreased from unity and in figure 8 (a ,  b )  we present s", Z when 
s"( co) = 0.5,O. 1 , O .  The numerical techniques employed here and in 0 5.3 were similar 
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FIGURE 9 ( a ) .  Subsonic eddy with n = 0.6:  values of s" for sym-metric eddy and for collapsed 
eddy. ( b )  Values of G corresponding to S in (a). 

f 

to those used previously. Derivatives in equations (3.3) were replaced by finite 
differences as in the discussion of supersonic breakdown in $4, and the Cauchy 
integral was treated as in $5.1. The limit solution for s"(co) = 0 has, at its 
downstream end, a collapse similar to the downstream collapse of the symmetric 
n = 4 eddy. As 2-t 9, -0, both s" and s"l tend to zero although S is again infinite and 

(5.20) 
the forms are 

while for 2 > x"+ 

s" = 0, .ii x - n 2 + + ( 3 k ) + ( ~ - ~ + ) ~ ,  8' x -~E(z-z+)-+, (5.21) 

with n = $, which may be compared with (5.4), (5.5) respectively. The positive 
constant k ,  and the position d+ of the cusp, follow from the numerical work and we 
obtain 2, x 2.24, E x 0.38. The equations for the adjustment region again reduce to 
the single integral equation (5.12). 

s" x k ( ~ +  - 212, .ii = - nx", + i(4 - 3n)  (z+ - z), 
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5.3.  The value n = 0.6 
For values of n such that < n < f the solution must be such that 8, u"+0 as 
191 + 03. There appears to be one symmetric solution only (corresponding to  s" = 1, 
Q = 0 when n = f and to the symmetric collapsed eddy when n = a) with x" having 
its maximum value, of unity say, at the origin and 6 an odd function of 9. This 
maximum may be moved to the left until it reaches a critical position when the eddy 
collapses a t  some point Z+ > 0. This collapse is analogous to that experienced a t  
n = t and n = g, and indeed the results (5.20), (5.21) hold for general n. For n = 0.6, 
for example, we obtain 9+ M 2.5 and k M 0.4 and in figure 9 (a ,  6 )  we show x", 6 for the 
symmetric and for the collapsed eddy. The corresponding solution for upstream 
collapse may be deduced by applying (5.1) with A = - 1 .  

6. Further discussion 
The analysis presented here in $3 3 and 5 suggests that an inviscid separated planar 

eddy, initially in a slowly evolving state of zero or uniform vorticity, can break down 
within a finite scaled time due to  a fairly violent nonlinear interruption in the 
Kelvin-Helmholtz type of local interactive motion. This violent unsteady effect 
provides a link with the experimental observations of unsteady breakdown of 
separated flows noted in $ 1 .  

If this unsteady breakdown of the thin eddy does occur, its eruptive form, 
involving a focusing in the streamwise direction accompanied by stretching laterally 
and a faster temporal variation, leads on to a new stage where some extra physics 
comes into play (figure 10). The next new stage appears to be an Euler one where the 
typical slope of the eddy near its breakdown position becomes O( l ) ,  the eddy length 
and width scales then both being O(hi),  for n = t ,  say, so that the typical pressure and 
velocity variations induced inside and outside are O( l ) ,  while the timescale shortens 
considerably to O(hi). The local motion outside and within the eddy there becomes 
controlled by the unsteady Euler equations, therefore, and a new vortex-sheet type 
of problem is posed for the determination of the unsteady eddy shape during tthat 
stage. This could well produce a rolling-up of the eddy boundary, or another kind of 
breakdown. 

Moreover, it may be that other sections of the original thin eddy also go through 
the above process, leading then to multiple localized eruptions. These possible 
further implications seem to arise for a range of values of the index n introduced in 
the present study, including the favoured value n = 4, incidentally. The value t tends 
to be supported by integral constaints, that for undisturbed conditions upstream and 
downstream the streamwise integrals of S(x,t) and u(x,t) in (2.4) and (2.5) are 
conserved for all time, with (3.2) then providing O( 1) contributions to those integrals 
when n = +, and by the notion that the value + gives the strongest accessible 
singularity. Again, the breakdown form is a nominally exact solution of the entire 
unsteady system of 92, with allowance made for the adjustment zones present when 
n = t where smoothing is effected through small unsteady contributions or an 
effect,ive slight change in the value of n. 

The local eruptive process described theoretically above is similar in quality to 
some experimental observations on separating flow shown in Van Dyke's (1982) book 
and to the recent measurements of Dovgal et al. (1987), Kozlov (1987) and Mezaris 
et al. (1988) as well as to earlier experiments concerning the transition of separating 
flows ; see also Gruber, Bestek & Fasel(l987) for a numerical simulation of the effect of 
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FIGURE 10. Schematic diagram of the unsteady nonlinear focusing and eruption predicted 
theoretically for an initially thin eddy. After the separated nonlinear eddy in (a )  on a symmetric 
airfoil is disturbed, the eruption in ( b )  occurs and that leads on to the Euler stage of a vortex-sheet 
flow problem in (c). 

a Tollmien-Schlichting wave on a separated flow. As Mezaris et al. comment, a fair 
degree of quantitative as well as qualitative agreement exists between their 
experimental results and the predictions, e.g. ( l . l ) ,  of a theory related to the present 
study. That theory (Smith 1985a) is centred closer to the separation point but still 
beyond the triple-deck structure which controls the separation itself (and which 
Mezaris et al. seem to identify empirically in one of their figures), and the basic 
controlling equations in the incompressible/subsonic regime are 

au au ap 
ax ax’ $U-=--  

as a 
-+-(US) = 0, aT 8X 

( 6 . 1 ~ )  

(6 . lb)  

( 6 . 1 ~ )  

( 6 . l d )  
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in scaled terms, for the unknowns U , P , X ,  A as functions of X , T .  Here U ,  P,X are 
essentially as in $ 2  with zero vorticity assumed but - A  stands for the boundary- 
layer displacement. A linearized version of (6.1) yields the earlier prediction ( l . l ) ,  
and there is a corresponding destabilization of the separated flow in the supersonic 
regime where (6 . ld )  is replaced by P = -aA/aX.  Since the system (6.1) approaches 
that of $2  further downstream, however, where A M -8 in ( G . l c ) ,  we expect 
sufficiently large disturbances in the local separated motion of (6.1) to erupt 
nonlinearly in much the same way as those discussed in the present work, thus 
forming the above link with the experimental findings. 

4 very similar finite-time breakdown is expected also to apply to the first stage of 
interaction in impulsively started flow past a circular cylinder. That interactive stage 
follows the classical boundary-layer breakdown of Van Dommelen (1981), and as 
noted by Elliott, Cowley & Smith (1983) its scaled governing equations are precisely 
(2.3) with (2.1). The boundary conditions are different, in that matching requires 

u cc y-2 asy+O+,  

u 0~ (S-y)-2 as y+S-, 

( 6 . 2 ~ )  

(6.2b) 

and the flow solution starts from t = - co in effect. Even so, an eruption of the 
present type seems most likely since (6.2a, 6 )  can then play a secondary role, 
although the assumption of locally uniform vorticity with n = t may well need to be 
modified. Given such an eruption (see also Smith 1985a; Henkes & Veldman 1987; 
Peridier, Smith & Walker 1988), the subsequent stage encountered locally on the 
cylinder is an Euler one again. Another application or extension of the present type 
of nonlinear breakdown with increasngly separated flow is to boundary-layer 
transition, via the unsteady triple-deck problem that governs the first nonlinear 
growth of Tollmien-Schlichting instabilities. Certain high-frequencylfar-down- 
stream properties are given by the nonlinear system (6.1) and others yield the classical 
breakdown and ensuing interactive structure where (6.2) comes into operation : 
Smith & Burggraf (1985). The problem involving (6.2) can also enter during a 
subsequent Euler stage of higher amplitudes. The entire unsteady triple-deck 
interaction in a subsonic or supersonic stream may also collapse nonlinearly with 
increasingly separated motion being induced ; cf. the finite-time collapse of a 
complete interactive boundary layer described by Brotherton-Ratcliffe & Smith 
(1987). 

Investigations of channel and pipe flows, wall-bounded jets and liquid-layer 
motions suggest that an analogous destabilization occurs when separated zones are 
present a t  high Reynolds numbers and these need to be pursued, as does the 
application to wind over water where there could be an interesting interplay between 
shallow-water properties and the pressure-displacement relation (2.1). In  the present 
context of airfoil motion, non-symmetric wake features likewise seem well worth 
studying, for practical reasons a t  least, as do three-dimensional nonlinear effects and 
the influence of cross-flow. The three-dimensional subsonic version, for instance, of 
the simplified interaction (2.4), ( 2 . 5 ) ,  (2.1) for zero or negligible vorticity is of the 
form 

( 6 . 3 ~ )  

aw aw aw a p  -+u-+ w- = -- 
at ax az 2z ’ 

(6 .3b )  
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ax a a 
-+-(US)+-(WX) = 0,  
at ax aZ 

27~ --c4 a tz  [(x-g)2+(z-,q)2]f‘ 
p ( x ,  z ,  t )  = - SI,” dg d7 

( 6 . 3 ~ )  

(6.3d) 

Like its planar-flow counterpart, (6.3) can become singular a t  a finite time with the 
n = a option again but there may be other kinds of nonlinear breakdown possible of 
a more three-dimensional nature, just as three-dimensional linear modes are found to 
be more unstable than planar ones according to (6.3). In  particular a highly three- 
dimensional version of (6.3) has u, w, p ,  S of order /?, 1 = !, 1 , 2 , 0  in turn, with z ,  x, t 
of order /P, m = 1, -f, 0 respectively and p being small, in which case the main 
governing equations reduce to 

(6.4a) 

(6.46) 

( 6 . 4 ~ )  

with a2s^/ax2 = a2X/i3x2. This form may reproduce the longitudinal vortex growth 
sometimes observed experimentally in separating flow. Throughout. viscous effects 
also need to be incorporated even if the predominantly inviscid breakdown 
associated with (6.2) tends to arise when viscous effects act initially within a passive 
unsteady boundary layer. 

We note two final points: firstly a paper by Varley & Blythe (1983) was kindly 
pointed out to us by Professor J. D. A. Walker after the completion of our study, 
and it has a (rather loose) connection with our work; secondly the restriction 
1 9 h 9 R-; applies for the basic equations of $ 2 ,  in view of the mass flux in the 
eddy and in the separated shear layer. 
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